Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Virol Methods ; 315: 114710, 2023 05.
Article in English | MEDLINE | ID: covidwho-2256444

ABSTRACT

A plant-based heterologous expression system is an attractive option for recombinant protein production because it is based on a eukaryotic system of high feasibility, and low biological risks. Frequently, binary vector systems are used for transient gene-expression in plants. However, plant virus vector-based systems offer advantages for higher protein yields due to their self-replicating machinery. In the present study, we show an efficient protocol using a plant virus vector based on a tobravirus, pepper ringspot virus, that was employed for transient expression of severe acute respiratory syndrome coronavirus 2 partial gene fragments of the spike (named S1-N) and the nucleocapsid (named N) proteins in Nicotiana benthamiana plants. Purified proteins yield of 40-60 µg/g of fresh leaves were obtained. Both proteins, S1-N and N, showed high and specific reactivities against convalescent patients' sera by the enzyme-linked immunosorbent assay format. The advantages and critical points in using this plant virus vector are discussed.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2/genetics , Recombinant Proteins , Enzyme-Linked Immunosorbent Assay , Spike Glycoprotein, Coronavirus/genetics
2.
Talanta ; 243: 123355, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1778463

ABSTRACT

Mass testing for the diagnosis of COVID-19 has been hampered in many countries owing to the high cost of genetic material detection. This study reports on a low-cost immunoassay for detecting SARS-CoV-2 within 30 min using dynamic light scattering (DLS). The immunosensor comprises 50-nm gold nanoparticles (AuNPs) functionalized with antibodies against SARS-CoV-2 spike glycoprotein, whose bioconjugation was confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and surface-enhanced Raman scattering spectroscopy (SERS). The specific binding of the bioconjugates to the spike protein led to an increase in bioconjugate size, with a limit of detection (LOD) 5.29 × 103 TCID50/mL (Tissue Culture Infectious Dose). The immunosensor was also proven to be selective upon interaction with influenza viruses once no increase in size was observed after DLS measurement. The strategy proposed here aimed to use antibodies conjugated to AuNPs as a generic platform that can be extended to other detection principles, enabling technologies for low-cost mass testing for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Dynamic Light Scattering , Gold/chemistry , Humans , Immunoassay/methods , Metal Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL